Sir John Gurdon: father of nuclear reprogramming.

نویسنده

  • Helen M Blau
چکیده

Sir John Gurdon founded the field of nuclear reprogramming. His work set the stage for the ever burgeoning area of stem cell biology and regenerative medicine. Here I provide personal reflections on times I shared with John Gurdon and professional reflections of the impact of his ground-breaking research on my own development as a scientist and on the field in general. His paradigm-shifting experiments will continue to provoke scientists to think outside the box for many years to come.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The egg and the nucleus: a battle for supremacy (Nobel Lecture).

Sir John Gurdon and Professor Shinya Yamanaka were the recipients of the 2012 Nobel Prize for Physiology or Medicine. This Spotlight article is a commentary on the early nuclear transplant work in Xenopus, which was very important for the Nobel award in 2012, and the influence of this work on the reprogramming field.

متن کامل

An interview with John Gurdon.

John Gurdon is a Distinguished Group Leader in the Wellcome Trust/Cancer Research UK Gurdon Institute and Professor Emeritus in the Department of Zoology at the University of Cambridge. In 2012, he was awarded the Nobel Prize in Physiology or Medicine jointly with Shinya Yamanaka for work on the reprogramming of mature cells to pluripotency, and his lab continues to investigate the molecular me...

متن کامل

From Stealing Fire to Cellular Reprogramming: A Scientific History Leading to the 2012 Nobel Prize

Cellular reprogramming was recently "crowned" with the award of the Nobel Prize to two of its groundbreaking researchers, Sir John Gurdon and Shinya Yamanaka. The recent link between reprogramming and stem cells makes this appear almost a new field of research, but its historical roots have actually spanned more than a century. Here, the Nobel Prize in Physiology or Medicine 2012 is placed in i...

متن کامل

H3K4 Methylation-Dependent Memory of Somatic Cell Identity Inhibits Reprogramming and Development of Nuclear Transfer Embryos

Vertebrate eggs can induce the nuclear reprogramming of somatic cells to enable production of cloned animals. Nuclear reprogramming is relatively inefficient, and the development of the resultant embryos is frequently compromised, in part due to the inappropriate expression of genes previously active in the donor nucleus. Here, we identify H3K4 methylation as a major epigenetic roadblock that l...

متن کامل

Histone variant macroH2A confers resistance to nuclear reprogramming

How various layers of epigenetic repression restrict somatic cell nuclear reprogramming is poorly understood. The transfer of mammalian somatic cell nuclei into Xenopus oocytes induces transcriptional reprogramming of previously repressed genes. Here, we address the mechanisms that restrict reprogramming following nuclear transfer by assessing the stability of the inactive X chromosome (Xi) in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Differentiation; research in biological diversity

دوره 88 1  شماره 

صفحات  -

تاریخ انتشار 2014